
Rapid Development of Application-Specific
Network Performance Tests

Scott Pakin

Los Alamos National Laboratory, Los Alamos, NM 87545, USA,
pakin@lanl.gov,

WWW home page: http://www.c3.lanl.gov/~pakin

Abstract. Analyzing the performance of networks and messaging lay-
ers is important for diagnosing anomalous performance in parallel appli-
cations. However, general-purpose benchmarks rarely provide sufficient
insight into any particular application’s behavior. What is needed is a fa-
cility for rapidly developing customized network performance tests that
mimic an application’s use of the network but allow for easier experimen-
tation to help determine performance bottlenecks.

In this paper, we contrast four approaches to developing customized
network performance tests: straight C, C with a helper library, Python
with a helper library, and a domain-specific language. We show that
while a special-purpose library can result in significant improvements
in functionality without sacrificing language familiarity, the key to fa-
cilitating rapid development of network performances tests is to use a
domain-specific language designed expressly for that purpose.

1 Introduction

Parallel applications utilize the interconnection network in a variety of ways, in-
cluding nearest-neighbor communication on a 2-D or 3-D mesh/torus (e.g., in
ocean-modeling codes [1]); hierarchical communication (e.g., in molecular-
dynamics codes [2]); and, master/slave communication (e.g., in Monte Carlo
codes [3]). However, general-purpose network performance tests such as Net-
PIPE [4], Mpptest [5], and those that appear in the Pallas MPI Benchmarks [6]
and SKaMPI [7] suites, measure performance independently of any particular
application’s usage of the network. For example, it is common to measure net-
work bandwidth as the peak data rate achieved when sending a large number of
messages back-to-back between two otherwise idle endpoints, even though few
applications utilize such a communication pattern. General-purpose tests are
nevertheless important to application developers because they indicate – in a
standard format – upper bounds in network performance that developers can
use to determine if application performance is being limited by the network.

Special-purpose benchmarks targeted to a particular inquiry are an impor-
tant complement to general-purpose benchmarks. For example, if an application
runs significantly slower than a general-purpose test would indicate, it may be
worthwhile to extract the application’s particular communication pattern into
a separate test program and perform in vivo experiments with that (simulating

mailto:pakin@lanl.gov
http://www.lanl.gov/
http://www.c3.lanl.gov/~pakin

message aggregation, varying message-buffer alignment, reducing communica-
tion granularity – all on a real cluster with a real network), the idea being that
it is quicker and easier to modify a small test program than a large application.
Unfortunately, special-purpose tests receive little attention in practice and in
the literature because they can be time-consuming to write and debug; and, be-
cause they may be run only a few times before being discarded, few application
developers consider the benefits worth the effort.

In this paper, we investigate three approaches intended to facilitate the rapid
generation of special-purpose network performance tests and compare these to
a baseline test written in standalone C. Section 2 describes the sample perfor-
mance test which is used as the basis for comparison, lists the metrics used to
evaluate the alternatives, and presents the baseline C implementation. Section 3
describes a library for performance testing and examines the improvement over
the baseline C code when used with C and with Python. Then, Sect. 4 intro-
duces the coNCePTuaL language, shows how the sample performance test can
be rewritten in coNCePTuaL, and highlights the benefits of doing so. Finally,
Sect. 5 draws some conclusions about the results of this study.

2 Problem Specification

When selecting a sample problem to use as a running example throughout this
paper, the challenge is to choose a communication pattern that is neither too
common (such as a latency or bandwidth benchmark) nor too esoteric (such
as one so targeted to a single application that the results do not generalize to
other patterns). Rather than create an appropriate problem ourselves, we borrow
one from a set of exercises associated with a long-existing MPI tutorial [8]. This
particular exercise, entitled “Exploring the cost of synchronization delays”1 reads
as follows (unedited):

In this example, 2 processes are communicating with a third. Process 0
is sending a long message to process 1 and process 2 is sending a relatively
short message to process 1 and then to process 0. Arrange the code so that
process 1 has already posted an MPI_Irecv for the message from process 2
before receiving the message from process 0, but also ensure that process 1
receives the long message from process 0 before receiving the message from
process 2.

This seemingly complex communication pattern mimics a pattern that
can occur in an application due to timing variations on each processor. If the
message sent by process 2 to process 1 is short but long enough to require a
rendezvous protocol, there can be a sigificant delay before the short message
from process 2 is received by process 1, even though the receive for that message
is already available. Explore the possibilities by considering various lengths of
messages.

In essence, this is the sort of performance test an application developer would
create if his application uses such a communication pattern and he wants to find
the source of its performance problems.
1 The problem statement and sample solution are available on the Web at http://
www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl/src3/3way/C/main.html.

http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl/src3/3way/C/main.html
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl/src3/3way/C/main.html

0 1 2

0 1 2

0 1 2

0 1 2

PostSYNC PostSYNC PostSYNC

CompleteSYNC
PostSEND
CompleteSEND

CompleteSYNC
Postasync.RECEIVE
Completeasync.RECEIVE
PostRECEIVE

CompleteSYNC
PostSEND
CompleteSEND

PostRECEIVE CompleteRECEIVE
PostSEND
CompleteSEND

CompleteRECEIVE
PostWAIT ALL
CompleteWAIT ALL

T
im

e

Fig. 1. Communication pattern described by the sample problem

The sample solution, written in C and using MPI as the communication
library, is 74 lines long and is illustrated in Fig. 1. The core communication and
reporting routines are presented below but the reader is directed to the URL
shown at the bottom of the previous page for the complete listing.

(44 lines omitted)
45 MPI_Barrier(MPI_COMM_WORLD);
46
47 if (myrank == 0) {
48 MPI_Send(bigdata, BIGSIZE, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
49 MPI_Recv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &status)

;
50 }
51 else if (myrank == 1) {
52 MPI_Irecv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &request

);
53 MPI_Send (litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD);
54 MPI_Recv(bigdata, BIGSIZE, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &

status);
55 MPI_Wait(&request, &status);
56 }
57 else if (myrank == 2) {
58 MPI_Recv(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD, &status)

;
59 t1 = MPI_Wtime();
60 MPI_Send(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
61 ts1 = MPI_Wtime() − t1;
62 t1 = MPI_Wtime();
63 MPI_Send(litdata, litsize, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD);
64 ts2 = MPI_Wtime() − t1;
65 }
66
67 if (myrank == 2) {
68 printf("[%d] Litsize = %d, Time for first send = %f, for second = %f\n",
69 myrank, litsize, ts1, ts2);
70 }

(4 lines omitted)

There are a number of shortcomings of the preceding code:

1. Too little information is output. Without a more detailed record of the ex-
perimental setup (e.g., shared libraries and versions being used, compiler
flags, environment variables, etc.) the application developer may overlook
some performance-affecting detail. Ideally, much more information should
be logged but doing so can require daunting coding effort.

#include "mpi.h"
#include <stdio.h>

#define BIGSIZE 10000
#define MAXLITSIZE 1024

int main(argc, argv)
int argc;
char *argv[];
{
 int myrank, numprocs;
 int i, tag = 50, litsize = 1;
 double bigdata[BIGSIZE];
 double litdata[MAXLITSIZE];
 double t1, ts1, ts2;
 MPI_Status status;
 MPI_Request request;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 if (numprocs < 3) {
 fprintf(stderr, "%s must be run with at least %d processes\n",
 argv[0], 3);
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 if (myrank == 0) {
	for (i=0; i<argc; i++) {
	 if (!argv[i]) continue;
	 if (strcmp(argv[i], "-n") == 0) {
		litsize = atoi(argv[i+1]);
		i++;
	 }
	}
 }
 MPI_Bcast(&litsize, 1, MPI_INT, 0, MPI_COMM_WORLD);

 for (i = 0; i < BIGSIZE; i++)
 bigdata[i] = 1000;
 for (i = 0; i < litsize; i++)
 litdata[i] = 1;

 MPI_Barrier(MPI_COMM_WORLD);

 if (myrank == 0) {
 MPI_Send(bigdata, BIGSIZE, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
 MPI_Recv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &status);
 }
 else if (myrank == 1) {
 MPI_Irecv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &request);
 MPI_Send (litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD);
 MPI_Recv(bigdata, BIGSIZE, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &status);
 MPI_Wait(&request, &status);
 }
 else if (myrank == 2) {
 MPI_Recv(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD, &status);
	t1 = MPI_Wtime();
 MPI_Send(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
	ts1 = MPI_Wtime() - t1;
	t1 = MPI_Wtime();
 MPI_Send(litdata, litsize, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD);
	ts2 = MPI_Wtime() - t1;
 }

 if (myrank == 2) {
	printf("[%d] Litsize = %d, Time for first send = %f, for second = %f\n",
		myrank, litsize, ts1, ts2);
 }

 MPI_Finalize();
 return 0;
}

Scott Pakin
Original C solution to the sample problem

2. 48 lines of initialization and finalization code (not shown) is too long. Ap-
plication developers are unlikely to consider writing a special-purpose per-
formance test if including header files, declaring variables, initializing the
messaging layer, parsing the command line, and doing all of the other banal,
non-performance-related activities take so much coding time.

3. The level of abstraction is too low. It is difficult to ascertain which lines of
code correspond to which parts of the problem statement.

We attempt to address these shortcomings in Sects. 3 and 4.

3 A Library for Performance Testing

Regardless of what particular communication patterns or performance charac-
teristics a benchmark tests, there are a number of mundane operations that the
code must perform such as parsing the command line, recording elapsed time,
computing performance statistics, and logging results to a file. Because such
operations are of common utility, it is practical to implement them in a helper
library so they can be reused by numerous performance tests.

For the pupose of this study, we use an existing library, the run-time per-
formance library used by coNCePTuaL [9]. This library exports a rich set of
functions intended to simplify performance testing. The reader is referred to the
coNCePTuaL User’s Guide [10] for details.

None of the performance library’s functions are specific to any particular
messaging layer. Consequently, the MPI calls in the code shown on the previous
page remain intact while the library improves the following constructs:

Parsing the command line Rather than explicitly scanning argv[] as in the
original code, using ncptl_parse_command_line() provides error checking,
support for short and long option names, and a --help option which de-
scribes each of the supported options.

Touching the message buffers The original code writes dummy values to the
message buffers as part of initialization. On CPUs with write-no-allocate
cache policies, this will not yield the desired result of preloading the buffers
into the cache. ncptl_touch_data(), in contrast, both reads and writes
each word of the buffer. This is a prime example of the usefulness of a helper
library: Once the library code is written, debugged, and made portable, all
programs that link to the library automatically benefit.

Reading the timer The ncptl_time() function reads the highest-resolution
timer available. Also, the log-file header includes the timer overhead, mean
increment, and increment standard deviation, all of which are measured dy-
namically during initialization time [9]. Hence, unlike MPI_Wtime() – which,
to begin with, is specific to MPI – the application developer knows exactly
how reliable the platform’s timing measurements can be.

Outputting results Replacing the original code’s lone printf() with a set
of ncptl_log_something() calls provides a number of benefits, the most
important of which is that it helps make the performance test reproducible.

###
===================
coNCePTuaL log file
===================
coNCePTuaL version: 0.5.3c
coNCePTuaL backend: c_mpi (C + MPI)
Executable name: /home2/pakin/src/conceptual-0.5.3c/syncdelays/syncdelays-conc
Working directory: /home2/pakin/src/conceptual-0.5.3c/syncdelays
Command line: ./syncdelays-conc
Number of tasks: 3
Processor (0<=P<tasks): 2
Host name: cadillac82.ccstar.lanl.gov
Operating system: Linux 2.4.24 #1 SMP Thu Jul 1 15:28:04 MDT 2004
CPU vendor: GenuineIntel
CPU architecture: i686
CPU model: Intel(R) XEON(TM) CPU 2.20GHz
CPU count: 2
CPU frequency: 2199797000 Hz (2.2 GHz)
Cycle-counter frequency: (assumed to be the same as the CPU frequency)
OS page size: 4096 bytes
Physical memory: 3300409344 bytes (3.1 GB)
Library compiler+linker: /usr/bin/gcc
Library compiler version: 3.2.2 20030222 (Red Hat Linux 3.2.2-5) [3.2.2]
Library compiler options: -g -O2
Library linker options: -lm -lpopt
Library compiler mode: ILP32
Microsecond timer type: inline assembly code
Average microsecond timer overhead: <1 microsecond
Microsecond timer increment: 1 +/- 0 microseconds (ideal: 1 +/- 0)
Minimum sleep time: 19961.3 +/- 228.193 microseconds (ideal: 1 +/- 0)
WARNING: Sleeping exhibits poor granularity (not a serious problem).
WARNING: Sleeping has a large error component (not a serious problem).
Process CPU timer: getrusage()
Process CPU-time increment: 10000 +/- 0 microseconds (ideal: 1 +/- 0)
WARNING: Process timer exhibits poor granularity (not a serious problem).
Log file template: ./syncdelays-conc-%p.log
Size of big message (doubles): 10000
Size of small message (doubles): 1
Number of minutes after which to kill the job (-1=never): -1
List of signals that should not be trapped: 14
MPI send routine: MPI_Send()
MPI error checking: off
Compilation command line: mpicc -I/home2/pakin/ncptl/include -g -O2 c_mpi_112760.c -L/usr/local/ibgd/driver/infinihost/lib -L/home2/pakin/ncptl/lib -lm -lncptl -lm -lpopt -o syncdelays-conc
Log creator: Scott D. Pakin
Log creation time: Sat Feb 19 15:31:04 2005
#
Environment variables

BZIP2: -9
CVS_RSH: /usr/bin/ssh
EDITOR: /usr/bin/emacs
GROUP: CCN-5
GZIP: --best
G_BROKEN_FILENAMES: 1
HOME: /home2/pakin
HOST: cadillac82.ccstar.lanl.gov
HOSTTYPE: i386-linux
KRB5CCNAME: FILE:/tmp/krb5cc_19240_j23905
LAMHELPFILE: /etc/lam/lam-helpfile
LANG: en_US.UTF-8
LD_LIBRARY_PATH: /home2/pakin/ncptl/lib
LESSOPEN: |/usr/bin/lesspipe.sh %s
LOGNAME: pakin
LS_COLORS:
MACHTYPE: i386
MAIL: /var/mail/pakin
MPIRUN_HOST: cadillac95.ccstar.lanl.gov
MPIRUN_ID: 13351
MPIRUN_NPROCS: 3
MPIRUN_PORT: 34823
MPIRUN_RANK: 2
NCPTL_NOFORK: 1
OSTYPE: linux
PATH: /home2/pakin/bin:/usr/local/project/mpich/mvich-1.0/bin:/usr/kerberos/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:.
PVM_ROOT: /usr/share/pvm3
PVM_RSH: /usr/bin/rsh
PWD: /home2/pakin/src/conceptual-0.5.3c/syncdelays
PYTHONPATH: /home2/pakin/lib/python2.2:/home2/pakin/lib/python2.2/site-packages:/home2/pakin/lib/python2.2/site-packages/Numeric:/home2/pakin/ncptl/lib/python2.2/site-packages/libncptl
QTDIR: /usr/lib/qt-3.1
SHELL: /bin/tcsh
SHLVL: 1
SSH_ASKPASS: /usr/libexec/openssh/gnome-ssh-askpass
SSH_CLIENT: 10.128.204.95 34826 22
SSH_CONNECTION: 10.128.204.95 34826 10.128.204.82 22
SUPPORTED: en_US.UTF-8:en_US:en
TEXDOCVIEW_pdf: (acroread %s) &
USER: pakin
VENDOR: intel
#
coNCePTuaL source code

Require language version "0.5.3b".

bigsize is "Size of big message (doubles)" and comes from "--bigsize" or "-b" with default 10000.
litsize is "Size of small message (doubles)" and comes from "--litsize" or "-n" with default 1.

Assert that "this program must be run with at least 3 processes" with num_tasks>=3.

All tasks touch all message buffers then
all tasks synchronize then

"Arrange the code so that process 1 has already posted an MPI_Irecv
for the message from process 2 before receiving the message from
process 0,"
task 1 asynchronously receives a litsize doubleword message from task 2 then

"Process 0 is sending a long message to process 1"
task 0 sends a bigsize doubleword message to task 1 then

"also ensure that process 1 receives the long message from process 0
before receiving the message from process 2."
task 1 awaits completion then

"process 2 is sending a relatively short message to process 1 and
then to process 0."
task 2 resets its counters then
task 2 sends a litsize doubleword message to unsuspecting task 1 then
task 2 logs litsize as "Litsize" and elapsed_usecs as "Time for first send" then
task 2 resets its counters then
task 2 sends a litsize doubleword message to task 0 then
task 2 logs elapsed_usecs as "Time for second send".
#
###
"Litsize","Time for first send","Time for second send"
"(all data)","(all data)","(all data)"
1,4,2
###
Program exited normally.
Log completion time: Sat Feb 19 15:31:04 2005
Elapsed time: 0 seconds
Process CPU usage (user+system): 0 seconds
Task IDs assigned to processor 2: 2
Processors assigned to task ID 2: 2
###

Scott Pakin
Sample coNCePTuaL log file

A prior publication expands upon this issue and presents a sample log file [9]
but the key idea is that by logging not only measurement data but also
the entire experimental setup – system architecture, software used, timer
accuracy, environment variables, etc. – log files become self-documenting.
This is important to application developers because they can use a special-
purpose performance test to diagnose a problem. Then, when they believe
they have fixed the problem, they can re-run the performance test in exactly
the same way that it was run previously and accurately compare the results.

The following shows how the original code’s printf() can be replaced by
library functions to improve program reproducibility:

(66 lines omitted)
67 if (myrank == 2) {
68 /∗ Log the results to a file. ∗/
69 NCPTL_LOG_FILE_STATE ∗logfile = ncptl_log_open("syncdelays−conclib−%p.

log", myrank);
70 ncptl_log_write_header (logfile, argv[0], "N/A", "N/A", myrank, numprocs,

conc_args, 1, NULL);
71 ncptl_log_write (logfile, 0, "Litsize", NCPTL_FUNC_NO_AGGREGATE, (double)

litsize);
72 ncptl_log_write (logfile, 1, "Time for first send",

NCPTL_FUNC_NO_AGGREGATE, (double)ts1);
73 ncptl_log_write (logfile, 2, "Time for second send",

NCPTL_FUNC_NO_AGGREGATE, (double)ts2);
74 ncptl_log_commit_data (logfile);
75 ncptl_log_write_footer (logfile);
76 ncptl_log_close (logfile);
77 }

(4 lines omitted)

Using a performance-testing-centric library addresses shortcoming 1 on
page 3. However, it does not address the remaining two shortcomings. This
raises the question: Can special-purpose performance tests be developed more
rapidly using a high-level language instead of C? The intention is to reduce
code turnaround time and to relieve the application developer of the tedium of
declaring variables, allocating and deallocating memory, and performing other
low-level operations. To answer the preceding question, we re-coded the solution
to the sample problem in Python – specifically, ScientificPython [11] for its MPI
support – while continuing to use the performance library, which has a Python
interface. The core communication and reporting routines are presented below:

(28 lines omitted)
29 comm_world.barrier()
30
31 if myrank == 0:
32 comm_world.send(bigdata, 1, tag)
33 comm_world.receive(litdata, 2, tag)
34 elif myrank == 1:
35 request = comm_world.nonblockingReceive(litdata, 2, tag)
36 comm_world.send(litdata, 2, tag)
37 comm_world.receive(bigdata, 0, tag)
38 request.wait()
39 elif myrank == 2:
40 comm_world.receive(litdata, 1, tag)

#include "mpi.h"
#include <stdio.h>
#include <ncptl/ncptl.h>

#define BIGSIZE 10000
#define MAXLITSIZE 1024

int main(argc, argv)
int argc;
char *argv[];
{
 int myrank, numprocs;
 int i, tag = 50;
 ncptl_int litsize; /* Changed to ncptl_int for command-line parsing */
 double bigdata[BIGSIZE];
 double litdata[MAXLITSIZE];
 ncptl_int t1, ts1, ts2;
 MPI_Status status;
 MPI_Request request;
 NCPTL_CMDLINE conc_args[] = { /* Description of command-line options */
 {NCPTL_TYPE_INT, (CMDLINE_VALUE *)&litsize, "litsize", 'n',
 "Size of small message (doubles)", (CMDLINE_VALUE)(ncptl_int)1}
 };

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 if (numprocs < 3) {
 fprintf(stderr, "%s must be run with at least %d processes\n",
 argv[0], 3);
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 /* Parse the command line and initialize coNCePTuaL. */
 ncptl_parse_command_line(argc, argv, conc_args, 1);
 ncptl_init (NCPTL_RUN_TIME_VERSION, argv[0]);

 MPI_Bcast(&litsize, 1, MPI_INT, 0, MPI_COMM_WORLD);

 for (i = 0; i < BIGSIZE; i++)
 bigdata[i] = 1000;
 for (i = 0; i < litsize; i++)
 litdata[i] = 1;

 MPI_Barrier(MPI_COMM_WORLD);

 if (myrank == 0) {
 MPI_Send(bigdata, BIGSIZE, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
 MPI_Recv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &status);
 }
 else if (myrank == 1) {
 MPI_Irecv(litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD, &request);
 MPI_Send (litdata, litsize, MPI_DOUBLE, 2, tag, MPI_COMM_WORLD);
 MPI_Recv(bigdata, BIGSIZE, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &status);
 MPI_Wait(&request, &status);
 }
 else if (myrank == 2) {
 MPI_Recv(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD, &status);
	t1 = ncptl_time();
 MPI_Send(litdata, litsize, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
	ts1 = ncptl_time() - t1;
	t1 = ncptl_time();
 MPI_Send(litdata, litsize, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD);
	ts2 = ncptl_time() - t1;
 }

 if (myrank == 2) {
 /* Log the results to a file. */
 NCPTL_LOG_FILE_STATE *logfile =
	 ncptl_log_open("syncdelays-conclib-%p.log", myrank);
	ncptl_log_write_header (logfile, argv[0], "N/A", "N/A", myrank,
				numprocs, conc_args, 1, NULL);
	ncptl_log_write (logfile, 0, "Litsize", NCPTL_FUNC_NO_AGGREGATE,
			 (double)litsize);
	ncptl_log_write (logfile, 1, "Time for first send",
			 NCPTL_FUNC_NO_AGGREGATE, (double)ts1);
	ncptl_log_write (logfile, 2, "Time for second send",
			 NCPTL_FUNC_NO_AGGREGATE, (double)ts2);
	ncptl_log_commit_data (logfile);
	ncptl_log_write_footer (logfile);
	ncptl_log_close (logfile);
 }

 MPI_Finalize();
 return 0;
}

Scott Pakin
C + library solution to the sample problem

#! /usr/bin/env mpipython

import sys
import Numeric
from Scientific import MPI
from libncptl import *

bigsize = 10000
tag = 50

comm_world = MPI.world.duplicate()
myrank, numprocs = comm_world.rank, comm_world.size
if numprocs < 3:
 sys.stderr.write("%s must be run with at least %d processess\n" % (sys.argv[0], 3))
 comm_world.abort(1)

Parse the command line and initialize coNCePTuaL.
conc_args = [["litsize", "Size of small message (doubles)", "litsize", "n", 1L]]
ncptl_parse_command_line(len(sys.argv), sys.argv, conc_args, 1)
ncptl_init(NCPTL_RUN_TIME_VERSION, sys.argv[0])

litmsg = Numeric.array([int(conc_args[0][-1])])
comm_world.broadcast(litmsg, 0)
litsize = litmsg[0]

bigdata = Numeric.zeros(bigsize)
litdata = Numeric.zeros(litsize)

comm_world.barrier()

if myrank == 0:
 comm_world.send(bigdata, 1, tag)
 comm_world.receive(litdata, 2, tag)
elif myrank == 1:
 request = comm_world.nonblockingReceive(litdata, 2, tag)
 comm_world.send(litdata, 2, tag)
 comm_world.receive(bigdata, 0, tag)
 request.wait()
elif myrank == 2:
 comm_world.receive(litdata, 1, tag)
 t1 = ncptl_time()
 comm_world.send(litdata, 1, tag)
 ts1 = ncptl_time() - t1
 t1 = ncptl_time()
 comm_world.send(litdata, 0, tag)
 ts2 = ncptl_time() - t1

if myrank == 2:
 # Log the results to a file.
 logfile = ncptl_log_open("syncdelays-pyconclib-%p.log", myrank)
 ncptl_log_write_header(logfile, sys.argv[0], "N/A", "N/A", myrank,
 numprocs, conc_args, 1, [])
 ncptl_log_write(logfile, 0, "Litsize", NCPTL_FUNC_NO_AGGREGATE, litsize)
 ncptl_log_write(logfile, 1, "Time for first send", NCPTL_FUNC_NO_AGGREGATE, ts1)
 ncptl_log_write(logfile, 2, "Time for second send", NCPTL_FUNC_NO_AGGREGATE, ts2)
 ncptl_log_commit_data(logfile)
 ncptl_log_write_footer(logfile)
 ncptl_log_close(logfile)

Scott Pakin
Python + library solution to the sample problem

41 t1 = ncptl_time()
42 comm_world.send(litdata, 1, tag)
43 ts1 = ncptl_time() − t1
44 t1 = ncptl_time()
45 comm_world.send(litdata, 0, tag)
46 ts2 = ncptl_time() − t1
47
48 if myrank == 2:
49 # Log the results to a file.
50 logfile = ncptl_log_open("syncdelays−pyconclib−%p.log", myrank)
51 ncptl_log_write_header(logfile, sys.argv[0], "N/A", "N/A", myrank,
52 numprocs, conc_args, 1, [])
53 ncptl_log_write(logfile, 0, "Litsize", NCPTL_FUNC_NO_AGGREGATE, litsize)
54 ncptl_log_write(logfile, 1, "Time for first send", NCPTL_FUNC_NO_AGGREGATE,

ts1)
55 ncptl_log_write(logfile, 2, "Time for second send", NCPTL_FUNC_NO_AGGREGATE

, ts2)
56 ncptl_log_commit_data(logfile)
57 ncptl_log_write_footer(logfile)
58 ncptl_log_close(logfile)

Line for line, the Python version is fairly similar to the C version; an appli-
cation developer unfamiliar with Python should have no trouble understanding
the code. However, we can say that the Python version remedies shortcoming 2
on page 4 by being shorter (by ∼21%) and arguably less error-prone than the C
version. Nevertheless, the level of abstraction is unchanged from the C version;
the connection between the problem statement and the code remains unclear. In
Sect. 4 we determine if a domain-specific language can improve the situation.

4 A Domain-Specific Language for Performance Testing

Application developers – and programmers in general – are often loath to use
domain-specific languages. There is an inherent cost to learning a new language
which can be hard to justify in absense of a priori understanding of the domain-
specific language’s practical benefits. It is therefore important for this paper to
evaluate how well a domain-specific language can be suited to the rapid develop-
ment of application-specific network performance tests.

coNCePTuaL – whose unusual capitalization stands for “Network Correct-
ness and Performance Testing Language” – is a domain-specific language de-
signed to facilitate the rapid development of special-purpose network perfor-
mance tests [9]. The coNCePTuaL language is English-like and uses SPMD
semantics to express parallelism. coNCePTuaL programs implicitly use the
performance library described in Sect. 3 through various language idioms. The
following is the complete, commented coNCePTuaL solution to the problem
specified in Sect. 2:
1 Require language version "0.5.2b".
2
3 bigsize is "Size of big message (doubles)" and comes from "−−bigsize" or "−b" with

default 10000.
4 litsize is "Size of small message (doubles)" and comes from "−−litsize" or "−n" with

default 1.
5
6 Assert that "this program must be run with at least 3 processes" with num_tasks>=3.
7
8 All tasks touch all message buffers then

Require language version "0.5.2b".

bigsize is "Size of big message (doubles)" and comes from "--bigsize" or "-b" with default 10000.
litsize is "Size of small message (doubles)" and comes from "--litsize" or "-n" with default 1.

Assert that "this program must be run with at least 3 processes" with num_tasks>=3.

All tasks touch all message buffers then
all tasks synchronize then

"Arrange the code so that process 1 has already posted an MPI_Irecv
for the message from process 2 before receiving the message from
process 0,"
task 1 asynchronously receives a litsize doubleword message from task 2 then

"Process 0 is sending a long message to process 1"
task 0 sends a bigsize doubleword message to task 1 then

"also ensure that process 1 receives the long message from process 0
before receiving the message from process 2."
task 1 awaits completion then

"process 2 is sending a relatively short message to process 1 and
then to process 0."
task 2 resets its counters then
task 2 sends a litsize doubleword message to unsuspecting task 1 then
task 2 logs litsize as "Litsize" and elapsed_usecs as "Time for first send" then
task 2 resets its counters then
task 2 sends a litsize doubleword message to task 0 then
task 2 logs elapsed_usecs as "Time for second send".

Scott Pakin
coNCePTuaL solution to the sample problem

9 all tasks synchronize then
10
11 # "Arrange the code so that process 1 has already posted an MPI_Irecv
12 # for the message from process 2 before receiving the message from
13 # process 0,"
14 task 1 asynchronously receives a litsize doubleword message from task 2 then
15
16 # "Process 0 is sending a long message to process 1"
17 task 0 sends a bigsize doubleword message to task 1 then
18
19 # "also ensure that process 1 receives the long message from process 0
20 # before receiving the message from process 2."
21 task 1 awaits completion then
22
23 # "process 2 is sending a relatively short message to process 1 and
24 # then to process 0."
25 task 2 resets its counters then
26 task 2 sends a litsize doubleword message to unsuspecting task 1 then
27 task 2 logs litsize as "Litsize" and elapsed_usecs as "Time for first send" then
28 task 2 resets its counters then
29 task 2 sends a litsize doubleword message to task 0 then
30 task 2 logs elapsed_usecs as "Time for second send".

Two things are immediately apparent about the preceding code listing. First,
its length is half that of even the corresponding Python code. Second, coNCeP-
TuaL statements closely correspond to the natural-language statements in the
problem specification. For example, posting a send implicitly posts the match-
ing receive (suppressable with the unsuspecting keyword, as in line 26), as this
is how network performance tests typically are described textually. By raising
the abstraction level of performance tests to match that of a natural-language
problem specification, coNCePTuaL satisfactorily addresses shortcoming 3 on
page 4, the final shortcoming of the original C solution. There is no performance
penalty to using coNCePTuaL, as indicated by the following message over-
heads output by the various code versions: C: (5µs, 2µs); C + library: (4µs,
1µs); Python: (10µs, 5µs); coNCePTuaL: (4µs, 2µs). (coNCePTuaL reports
slightly lower overheads than C because it directly reads the CPU cycle counter;
when configured to use gettimeofday() it reports the same overheads as C.)

coNCePTuaL is not limited to MPI. Any of a variety of code generators is
selectable at compile time. In fact, Fig. 1 was produced automatically from the
preceding listing merely by specifying an “illustration” code generator.

5 Conclusions

Special-purpose network performance tests enable an application developer to ex-
periment with communication alternatives faster and with less hassle that would
be required to restructure the original application. Such tests are rarely used
in practice, however, because of the their development overhead. This paper fol-
lowed the evolution of a sample special-purpose performance test from its natural-
language problem specification through C, C + helper library, Python + helper
library, and domain-specific-language solutions. Each alternative improved upon
the previous one: richer output; shorter, easier-to-develop programs; and, higher
levels of abstraction. However, only the domain-specific language, coNCeP-
TuaL, fully encapsulated all three of those benefits.

This paper elucidated the tradeoffs that application developers face when
considering using special-purpose network performance tests as a tool for perfor-
mance optimization. Developers can reduce development time with little effort
merely by calling appropriate library functions. Developers who couple a library
with a high-level language can further reduce development time, making special-
purpose network performance tests more attractive to write. The biggest payoff
comes from using a domain-specific language, which provides a natural mapping
from problem specification to working code while still retaining the benefits of
short code lengths, ease of development, and reproducibility of results.

The coNCePTuaL compiler and performance library are freely available
from http://conceptual.sourceforge.net/.

References

1. Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-
Cartesian coordinates. Ocean Modelling 4 (2002) 55–88

2. Blelloch, G., Narlikar, G.: A practical comparison of N -body algorithms. In:
Parallel Algorithms. Volume 30 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, DIMACS (1997)

3. Basney, J., Raman, R., Livny, M.: High throughput Monte Carlo. In: Proceedings
of the 9th SIAM Conference on Parallel Processing for Scientific Computing, San
Antonio, Texas (1999)

4. Snell, Q.O., Mikler, A.R., Gustafson, J.L.: NetPIPE: A network protocol indepen-
dent performance evaluator. In: Proceedings of the 1996 ISMM International Con-
ference on Intelligent Information Management Systems, Washington, DC, ACTA
Press (1996)

5. Gropp, W., Lusk, E.: Reproducible measurements of MPI performance character-
istics. In: Proceedings of the 6th European PVM/MPI Users’ Group Meeting (Eu-
roPVM/MPI’99). Volume 1697 of Lecture Notes in Computer Science., Barcelona,
Spain, Springer-Verlag (1999) 11–18

6. Pallas, GmbH: Pallas MPI Benchmarks—PMB, Part MPI-1. (2000)
7. Reussner, R., Sanders, P., Prechelt, L., Müller, M.: SKaMPI: A detailed, accurate

MPI benchmark. In: Proceedings of the 5th European PVM/MPI Users’ Group
Meeting (EuroPVM/MPI’98). Volume 1497 of Lecture Notes in Computer Science.,
Liverpool, United Kingdom, Springer-Verlag (1998) 52–59

8. Gropp, W.: Tutorial on MPI: The Message-Passing Interface. Argonne National
Laboratory, Argonne, Illinois. (1995) Available from ftp://info.mcs.anl.gov/pub/
mpi/tutorial.ps.

9. Pakin, S.: Reproducible network benchmarks with coNCePTuaL. In: Proceed-
ings of the 10th International Euro-Par Conference. Volume 3149 of Lecture Notes
in Computer Science., Pisa, Italy, Springer (2004) 64–71 ISBN 3-540-22924-8. Avail-
able from http://www.c3.lanl.gov/~pakin/papers/europar2004.pdf.

10. Pakin, S.: coNCePTuaL user’s guide. Technical Report LA-UR 03-7356, Los
Alamos National Laboratory, Los Alamos, New Mexico (2004) Available from
http://www.c3.lanl.gov/~pakin/software/conceptual/conceptual.pdf.

11. Hinsen, K.: ScientificPython User’s Guide. Centre National de la Recherche Scien-
tifique d’Orléans, Orléans, France. (2002)

http://conceptual.sourceforge.net/
ftp://info.mcs.anl.gov/pub/mpi/tutorial.ps
ftp://info.mcs.anl.gov/pub/mpi/tutorial.ps
http://www.c3.lanl.gov/~pakin/papers/europar2004.pdf
http://www.c3.lanl.gov/~pakin/software/conceptual/conceptual.pdf

	Introduction
	Problem Specification
	A Library for Performance Testing
	A Domain-Specific Language for Performance Testing
	Conclusions

